Scientists grow cells on a robot skeleton (but don’t know what to do with them yet) - The Verge

Scientist have grown human cells on a robot skeleton, hoping that by moving the skeleton they can better approximate the cells’ natural growing environment. The cells certainly grew, but it’s not clear yet if they would be any better for medical treatments.

The science of tissue engineering — or growing human cells for use in medicine — is very much in its infancy, with only the simplest lab-grown cells able to be used in experimental treatments today. But researchers say a new method of tissue engineering could potentially improve the quality of this work: growing the cells on a moving robot skeleton.

Typically, cells used in this sort of regenerative medicine are grown in static environments. Think: petri dishes and miniature 3D scaffolds. A few experiments in the past have shown that cells can be grown on moving structures like hinges, but these have only stretched or bent the tissue in a single direction. But researchers from the University of Oxford and robotics firm Devanthro thought that, if you want to grow matter designed to move and flex like tendons or muscles, it’d be better to recreate their natural growing environment as accurately as possible. So they decided to approximate a mobile human body.

Growing cells in an actual person creates all sorts of difficulties, of course, so the cross-disciplinary team decided to approximate the human musculoskeletal system as best they could using a robot. As described in a paper published in Communications Engineering, they adapted an open-source robot skeleton designed by the engineers at Devanthro and created a custom growing environment for the cells that can be fitted into the skeleton to bend and flex as required. (Such growing environments are known as bioreactors.)

The site they choose for this tissue agriculture was the robot’s shoulder joint, which had to be upgraded to more accurately approximate our own movements. Then, they created a bioreactor that could be fitted into the robot’s shoulder, consisting of strings of biodegradable filaments stretched between two anchor points, like a hank of hair, with the entire structure enclosed within a balloon-like outer membrane.

The skeleton was adapted from the open-source Roboy model.

    Image: Fisher Studios
  

The hair-like filaments were then seeded with human cells and the chamber flooded with a nutrient-rich liquid designed to encourage growth. The cells were grown over a two-week period during which they enjoyed a daily workout routine. For 30 minutes each day, the bioreactor was slotted into the shoulder and, for want of a better term, waggled about (though in a very scientific manner).

https://www.theverge.com/2022/5/26/23142769/tissue-engineering-growing-cells-mobile-robot-skeleton


Post ID: a9b27436-2912-4de9-9ce5-112d31422eed
Rating: 5
Created: 1 year ago
Your ad can be here
Create Post

Similar classified ads


News's other ads